Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Expert Opin Pharmacother ; 25(3): 281-294, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38465524

ABSTRACT

INTRODUCTION: Fcγ-receptors (FcγR) are membrane receptors expressed on a variety of immune cells, specialized in recognition of the Fc part of immunoglobulin G (IgG) antibodies. FcγRIIA-dependent platelet activation in platelet factor 4 (PF4) antibody-related disorders have gained major attention, when these antibodies were identified as the cause of the adverse vaccination event termed vaccine-induced immune thrombocytopenia and thrombosis (VITT) during the COVID-19 vaccination campaign. With the recognition of anti-PF4 antibodies as cause for severe spontaneous and sometimes recurrent thromboses independent of vaccination, their clinical relevance extended far beyond heparin-induced thrombocytopenia (HIT) and VITT. AREAS COVERED: Patients developing these disorders show life-threatening thromboses, and the outcome is highly dependent on effective treatment. This narrative literature review summarizes treatment options for HIT and VITT that are currently available for clinical application and provides the perspective toward new developments. EXPERT OPINION: Nearly all these novel approaches are based on in vitro, preclinical observations, or case reports with only limited implementation in clinical practice. The therapeutic potential of these approaches still needs to be proven in larger cohort studies to ensure treatment efficacy and long-term patient safety.


Subject(s)
COVID-19 Vaccines , Heparin , Receptors, IgG , Thrombocytopenia , Thrombosis , Humans , Thrombosis/drug therapy , Thrombosis/immunology , Heparin/adverse effects , Receptors, IgG/metabolism , Receptors, IgG/immunology , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Thrombocytopenia/chemically induced , Thrombocytopenia/immunology , Anticoagulants/adverse effects , Platelet Factor 4/immunology , Thromboinflammation/drug therapy , Animals , Purpura, Thrombocytopenic, Idiopathic/chemically induced , Purpura, Thrombocytopenic, Idiopathic/immunology , Purpura, Thrombocytopenic, Idiopathic/drug therapy , COVID-19/complications , COVID-19/prevention & control , COVID-19/immunology , Platelet Activation/drug effects
2.
J Clin Med ; 12(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37834770

ABSTRACT

An effective worldwide vaccination campaign started and is still being carried out in the face of the coronavirus disease 2019 (COVID-19) pandemic. While vaccines are great tools to confront the pandemic, predominantly adenoviral vector-based vaccines can cause a rare severe adverse effect, termed vaccine-induced immune thrombocytopenia and thrombosis (VITT), in about 1 in 100,000 vaccinated individuals. VITT is diagnosed 5-30 days post-vaccination and clinically characterized by thrombocytopenia, strongly elevated D-dimer levels, platelet-activating anti-platelet factor 4 (PF4) antibodies and thrombosis, especially at atypical sites such as the cerebral venous sinus and/or splanchnic veins. There are striking similarities between heparin-induced thrombocytopenia (HIT) and VITT. Both are caused by anti-PF4 antibodies, causing platelet and leukocyte activation which results in massive thrombo-inflammation. However, it is still to be determined why PF4 becomes immunogenic in VITT and which constituent of the vaccine triggers the immune response. As VITT-like syndromes are increasingly reported in patients shortly after viral infections, direct virus-PF4 interactions might be most relevant. Here we summarize the current information and hypotheses on the pathogenesis of VITT and address in vivo models, especially murine models for further studies on VITT.

3.
Cytoskeleton (Hoboken) ; 80(1-2): 21-33, 2023 01.
Article in English | MEDLINE | ID: mdl-36310101

ABSTRACT

Alterations in the organization of the cytoskeleton precede the escape of adherent cells from the framework of cell-cell and cell-matrix interactions into suspension. With cytoskeletal dynamics being linked to cell mechanical properties, many studies elucidated this relationship under either native adherent or suspended conditions. In contrast, tethered cells that mimic the transition between both states have not been the focus of recent research. Using human embryonic kidney 293 T cells we investigated all three conditions in the light of alterations in cellular shape, volume, as well as mechanical properties and relate these findings to the level, structure, and intracellular localization of filamentous actin (F-actin). For cells adhered to a substrate, our data shows that seeding density affects cell size but does not alter their elastic properties. Removing surface contacts leads to cell stiffening that is accompanied by changes in cell shape, and a reduction in cellular volume but no alterations in F-actin density. Instead, we observe changes in the organization of F-actin indicated by the appearance of blebs in the semi-adherent state. In summary, our work reveals an interplay between molecular and mechanical alterations when cells detach from a surface that is mainly dominated by cell morphology.


Subject(s)
Actins , Cytoskeleton , Humans , Actins/metabolism , Cytoskeleton/metabolism , Actin Cytoskeleton/metabolism , Kidney/metabolism , T-Lymphocytes/metabolism
4.
Nat Commun ; 11(1): 2190, 2020 05 04.
Article in English | MEDLINE | ID: mdl-32366850

ABSTRACT

Microfluidics by soft lithography has proven to be of key importance for biophysics and life science research. While being based on replicating structures of a master mold using benchtop devices, design modifications are time consuming and require sophisticated cleanroom equipment. Here, we introduce virtual fluidic channels as a flexible and robust alternative to microfluidic devices made by soft lithography. Virtual channels are liquid-bound fluidic systems that can be created in glass cuvettes and tailored in three dimensions within seconds for rheological studies on a wide size range of biological samples. We demonstrate that the liquid-liquid interface imposes a hydrodynamic stress on confined samples, and the resulting strain can be used to calculate rheological parameters from simple linear models. In proof-of-principle experiments, we perform high-throughput rheology inside a flow cytometer cuvette and show the Young's modulus of isolated cells exceeds the one of the corresponding tissue by one order of magnitude.


Subject(s)
Dimethylpolysiloxanes/chemistry , Elastic Modulus/physiology , Microfluidic Analytical Techniques/methods , Microfluidics/methods , Polyethylene Glycols/chemistry , Algorithms , Equipment Design , Flow Cytometry , HEK293 Cells , HL-60 Cells , Humans , Hydrodynamics , Microfluidic Analytical Techniques/instrumentation , Microfluidics/instrumentation , Models, Theoretical , Rheology , Spheroids, Cellular
SELECTION OF CITATIONS
SEARCH DETAIL
...